Control flow,
list comprehensions,
and functions

Lecture 03

Dr. Colin Rundel

Sta 663 - Spring 2023

Control Flow

Sta 663 - Spring 2023

Conditionals

Python supports typical if / else style conditional expressions,

X = 42

if x < 0:

print("X is negative')
elif x > 0:

print("X is positive')
else:

print("X is zero")

X 1s positive

X =0

if x < 0:

print("X is negative')
elif x > 0:

print("X is positive')
else:

print("X is zero")

X 1s zero

Sta 663 - Spring 2023

Significant whitespace

This is a fairly unique feature of Python - expressions are grouped together via
indenting. This is relevant for control flow (if, for, while, etc.) as well as function
and class definitions and many other aspects of the language.

Indents should be 2 or more spaces (4 is generally preferred based on PEP 8)
or tab character(s) - generally your IDE will handle this for you.

If there are not multiple expressions then indenting is optional, e.g.

if x == 0: print("X 1s zero")

X 1is zero

Sta 663 - Spring 2023

https://www.python.org/dev/peps/pep-0008/

Conditional scope

Conditional expressions do not have their own scope, so variables defined
within will be accessible / modified outside of the conditional.

This is also true for other control flow constructs (e.g. for, while, etc.)

s =0
S
0]
if True:
s = 3
S
3

Sta 663 - Spring 2023

while lOOps

will repeat until the provided condition evaluates to False,

i =17
seq = [1]
while i != 1:
if 1 % 2 ==
i/=2
else:

1=3"1+1

seq.append(1)

seq

[17, 52, 26.0, 13.0, 40.0, 20.0, 10.0, 5.0, 16.0, 8.0, 4.0, 2.0, 1.0]

Sta 663 - Spring 2023

for loops

iterate over the elements of a sequence,

for w in ["Hello", "world!"]: res = []
print(w, ":", len(w)) for ¢ in "abc123def567":
if (c.isnumeric()):
Hello : 5 res.append(int(c))
world! : 6 res
[1, 2, 3, 5, 6, 7]
sum = 0
for v in (1,2,3,4):
sum += v res = []
sum for 1 in range(0,10):
res += [1]
10

res

[OI 1’ 2/ 3/ 4/ 5[6/ 7[8’ 9]

Sta 663 - Spring 2023

break and continue

allow for either an early loop exit or a step to the next iteration respectively,

for 1 in range(1,10): for 1 in range(1,10):
if 1% 3 == 0: if 1 % 3 ==
continue break
print(i, end=" ") print(i, end=" ")
12457 8 12

Sta 663 - Spring 2023

loops and else

Both for and while loops can also include an else clauses which execute when
the loop is completes by either fully iterating (for) or meetings the while
condition, i.e. when break is not used.

for n in range(2, 10):
for x in range(2, n):
if n% x == 0:
print(n, 'equals', x, '*', n//Xx)
break
else:
print(n, 'is a prime number')

1s a prime number
1s a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

© 00 N O O b WODN

. . Sta 663 - Spring 2023
Example based on Python Tutorial - Section 4.4

10

pass

is a placeholder expression that does nothing, it can be used when an
expression is needed syntactically.

X = -3

if x < 0:
pass
elif x % 2 ==
print("x is even")
elif x % 2 == 1:
print("x is odd")

Sta 663 - Spring 2023

11

List comprehensions

Sta 663 - Spring 2023

Basics

List comprehensions provides a concise syntax for generating lists (or other
sequences) via iteration over another list (or sequences).

res = [] [x**2 for x in range(10)]

for x in range(10):

res.append(x**2) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

res

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Since it uses the for loop syntax, any sequence / iterable object is fair game:
[x**2 for x in [1,2,3]]

[1, 4, 9]
[x**2 for x in (1,2,3)]

[1, 4, 9]

[c.lower() for c in "Hello World!"]

['h', |e|’ I'LII I'LII lol’ I |, IWS;a6l&3I_’SprI”‘rg|%®23'Ll’ Id|, l!l]

14

Using if
List comprehensions can include a conditional clause(s) to filter the input list /
object,

[x**2 for x in range(10) if x % 2 == 0]

[0, 4, 16, 36, 64]

[x**2 for x in range(10) if x % 2 == 1]
[1, 9, 25, 49, 81]

The comprehension can include multiple if statements (which are combined via
and)

[x**2 for x in range(10) if x % 2 == 0 if x % 3 ==0]

[0, 36]

[x**2 for X in range(10) if x % 2 == 0 and x % 3 ==0]

[0, 36]

Sta 663 - Spring 2023

15

Multiple for keywords

Similarly, the comprehension can also contain multiple for statements which is
the equivalent of nested for loops,

res = []
for x in range(3):
for y in range(3):

res.append((x,y))
res

[(e, 0), (0, 1), (0, 2), (2, ©0), (2, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

[(x, y) for x in range(3) for y in range(3)]

[(e, 0), (0, 1), (0, 2), (1, ©0), (2, 1), (1, 2), (2, 0), (2, 1), (2, 2)]

Sta 663 - Spring 2023

16

z1ip
Is a useful function for “joining” the elements of multiple sequences (so they
can be jointly iterated over),

= [1,2,3]
[3,2,1]
Zip(x, y)

N N < X
1

<zip object at 0x12ald3a80>

list(z)
[(1, 3), (2, 2), (3, 1)]
[a**b for a,b in zip(Xx,Yy)]

[1, 4, 3]

[b**a for a,b in zip(x,y)]

[3, 4, 1]

) . . Sta 663 - Spring 2023
The zip object is an example of a generator which we will talk more about later on.

17

https://wiki.python.org/moin/Generators

zip and length mismatches

The length of the shortest sequence will be used, additional elements will be
ignored (silently)

X - [1121314]
y = range(3)

z = "ABCDE"
list(zip(x,y))

[(1/ O)/ (21 1)/ (31 2)]

list(zip(x,z))

[(1, 'A"), (2, 'B"), (3, 'C"), (4, 'D")]

list(zip(x,y,2))

[(1, o, 'A"), (2, 1, 'B"), (3, 2, 'C")]

Sta 663 - Spring 2023

18

Exercise 1

Using list comprehensions, complete the following tasks:

e Create a list containing tuples of x and y coordinates of all points of a regular
grid for € [0, 10] and y € [0, 10].

e Count the number of points where y > .

e Count the number of points x or y is prime.

Sta 663 - Spring 2023

19

Functions

Sta 663 - Spring 2023

Basic functions

Functions are defined using def, arguments can be defined with out without
default values.

def f(x, y=2, z=3):
print(f"x={x}, y={y}, z={z}")

f(1) f(z=-1, x=0)
x=1, y=2, z=3 x=0, y=2, z=-1
f(1,z=-1) ()
x=1, y=2, z=-1 TypeError: f() missing 1 required

f("abc", y=True) positional argument: 'x

x=abc, y=True, z=3

. Sta 663 - Spring 2023
Arguments with defaults must must follow the argument(s) without defaults

22

return statements

Functions must explicitly include a return statement to return a value.

def f(x): def g(x):

X**2 return x**2
f(2) 9(2)
type(f(2)) .

<class 'NoneType'>
type(9(2))

<class 'int'>

Functions can contain multiple return statements

def is_odd(x):

if x % 2 == 0: return False
else: return True
is_odd(2)
False
is_odd(3)
True

Sta 663 - Spring 2023

Multiple return values

Functions can return multiple values using a tuple or list,

def f():
return (1,2,3)
()

(1, 2, 3)

def g():
return [1,2,3]
a()

[1, 2, 3]

If multiple values are present and not in a sequence, then it will default to a
tuple,

def h(): def i():
return 1,2,3 return 1, [2, 3]
h() i()
(1, 2, 3) (1, [2, 3])

Sta 663 - Spring 2023

24

Docstrings

A common practice in Python is to document functions (and other objects)
using a doc string - this is a short concise summary of the objects purpose.

Docstrings are specified by supplying a string as the very line in the function
definition.

def f(): def g():
"Hello, I am the function f() \ """This function also
and I don't do anything" does absolutely nothing.
pass
pass
f.__doc__
g.__doc__

"Hello, I am the function f() and I don't do

anything" '"This function also \ndoes absolutely nothing.\n'

Sta 663 - Spring 2023 o5

Using docstrings

print(max.__doc__)

max(iterable, *[, default=obj, key=func]) -> value
max(argl, arg2, *args, *[, key=func]) -> value

With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.

With two or more arguments, return the largest argument.

print(str.__doc__)

str(object="'") -> str
str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object.__str_ () (if defined)
or repr(object).

encoding defaults to sys.getdefaultencoding().

errors defaults to 'strict'.

print("".lower.__doc__)

Return a copy of the string converted to lowercase.

Sta 663 - Spring 2023

26

Argument order

In Python the argument order matters - positional arguments must always
come before keyword arguments.

def f(x, vy, z):
print(f"x={x}, y={y}, z={z}")

f(1,2,3) f(x=1,y=2,3)

x=1, y=2, z=3 positional argument follows keyword argument
(<string>, line 1)
f(x=1,y=2,2z=3)
x=1, y=2, z=3 f(x=1,2,2z=3)
f(1,y=2,2=3) positional argument follows keyword argument
(<string>, line 1)
x=1, y=2, z=3

f(y=2,x=1,z=3) f(1,2,z=3)

x=1, y=2, z=3 x=1, y=2, z=3

Sta 663 - Spring 2023

Positional vs keyword arguments

def f(posl, pos2, /, pos_or_kwd, *, kwdl, kwd2):

| Positional or keyword |
| - Keyword only
- Positional only

For the following function x can only be passed by position and z only by name

def f(x, /, vy, *, z):
print(f"x={x}, y={y}, z={z}")

f(1,1,z=1) f(1,y=1,z=1)
x=1, y=1, z=1 x=1, y=1, z=1
f(1,1,1)

TypeError: f() takes 2 positional arguments but 3 were given

f(x=1,y=1,z=1)

TypeError: f() got some positional-only arguments passed as keyword arguments: 'x'

. Sta 663 - Spring 2023
Based on Python tutorial Sec 4.8.3

28

https://docs.python.org/3/tutorial/controlflow.html#special-parameters

Variadic arguments

If the number of arguments is unknown / variable it is possible to define
variadic functions using * or **. The former is for unnamed arguments which will

be treated as a tuple, the latter is for named arguments which will be treated as
adict.

def paste(*x, sep=" "):
return sep.join(x)

paste("A")

X
paste("A","B","C")

'A B C'
paste("1","2","3",sep=",")

'1,2,3"

Sta 663 - Spring 2023

Anonymous functions

are defined using the 1ambda keyword, they are intended to be used for very

short functions (syntactically limited to a single expression, and do not need a
return statement)

def f(x,y): g = lambda x, y: X**2 + y**2
return x**2 + y**2

f(2,3) g(2,3)
13 13
type(f) type(g)
<class 'function'> <class 'function'>

Sta 663 - Spring 2023

30

Function annotations (type hinting)

Python nows supports syntax for providing metadata around the expected type
of arguments and the return value of a function.

def f(x: str, y: str, z: str) -> str:
return x +y + z

These annotations are stored in the annotations_ attribute

f. annotations

{'x"'": <class 'str'>, 'y': <class 'str'>, 'z': <class 'str'>, 'return': <class

'str'>}

But doesn’t actually do anything at runtime:
f("A","B","C")

' ABC'

f(1,2,3)

6
Sta 663 - Spring 2023

31

Exercise 2

1. Write a function, kg_to_1b, that converts a list of weights in kilograms to a list
of weights in pounds (there a 1 kg = 2.20462 lbs). Include a doc string and
function annotations.

2. Write a second function, total_1b, that calculates the total weight in pounds
of an order, the input arguments should be a list of item weights in kilograms
and a list of the number of each item ordered.

Sta 663 - Spring 2023 32

Sta 663 - Spring 2023

