
(A very brief)
Introduction to Python

Lecture 02

Dr. Colin Rundel

1Sta 663 - Spring 2023

Basic types

3Sta 663 - Spring 2023

Type system basics
Like R, Python is a dynamically typed language but the implementation details
are very different as it makes extensive use of an object oriented class system
for implementation (more on this later)

True1

True

11

1

1.01

1.0

1+1j1

(1+1j)

"string"1

'string'

type(True)1

<class 'bool'>

type(1)1

<class 'int'>

type(1.0)1

<class 'float'>

type(1+1j)1

<class 'complex'>

type("string")1

<class 'str'>

Note - all of these types are scalar values.
4Sta 663 - Spring 2023

Dynamic types
As just mentioned, Python is dynamically typed langiage so most basic
operations will attempt to coerce object to a consistent type appropriate for the
operation.

Boolean operations:

1 and True1

True

0 or 11

1

not 01

True

not (0+0j)1

True

not (0+1j)1

False

Comparisons:

5. > 11

True

5. == 51

True

1 > True1

False

(1+0j) == 11

True

"abc" < "ABC"1

False

5Sta 663 - Spring 2023

Mathematical operations
1 + 51

6

1 + 5.1

6.0

1 * 5.1

5.0

True * 51

5

(1+0j) - (1+1j)1

-1j

5 / 1.1

5.0

5 / 21

2.5

5 // 21

2

5 % 21

1

7 ** 21

49

6Sta 663 - Spring 2023

Coercion errors
Python is not quite as liberal as R when it comes to type coercion,

"abc" > 51

TypeError: '>' not supported between instances of 'str' and 'int'

"abc" + 51

TypeError: can only concatenate str (not "int") to str

"abc" + str(5)1

'abc5'

"abc" ** 21

TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'

"abc" * 31

'abcabcabc'

More on why this happens in a little bit…

7Sta 663 - Spring 2023

Casting
Explicit casting between types can be achieved using the types as functions,
e.g. int(), float(), bool(), or str().

float("0.5")1

0.5

float(True)1

1.0

int(1.1)1

1

int("2")1

2

int("2.1")1

ValueError: invalid literal for int() with base 10:
'2.1'

bool(0)1

False

bool("hello")1

True

str(3.14159)1

'3.14159'

str(True)1

'True'

8Sta 663 - Spring 2023

Variable assignment
When using Python it is important to think of variable assignment as the
process of attaching a name to an object (literal, data structure, etc.)

x = 1001
x2

100

x = "hello"1
x2

'hello'

ß = 1 + 2 / 31
ß2

1.6666666666666665

a = b = 51

a1

5

b1

5

Python variable names can be of any length, and must only contain letters, numbers and underscores. They may
not begin with a number nor conflict with language keywords. Python 3 supports a subset of unicode for variable

9Sta 663 - Spring 2023

string literals
Strings can be defined using a couple of different approaches,

'allows embedded "double" quotes'1

'allows embedded "double" quotes'

"allows embedded 'single' quotes"1

"allows embedded 'single' quotes"

strings can also be triple quoted, using single or double quotes, which allows
the string to span multiple lines.

"""line one1
line two2
line three"""3

'line one\nline two\nline three'

a \ can also be used to span a long string over multiple lines without including
the newline

"line one \1
not line two \2
not line three"3

10Sta 663 - Spring 2023

f strings
As of Python 3.6 you can use f strings for string interpolation formatting (as
opposed to %-formatting and the format() method).

x = [0,1,2,3,4]1
f"{x[::2]}"2

'[0, 2, 4]'

f'{x[0]}, {x[1]}, ...'1

'0, 1, ...'

f"From {min(x)} to {max(x)}"1

'From 0 to 4'

f"{x} has {len(x)} elements"1

'[0, 1, 2, 3, 4] has 5 elements'

See PEP 498
11Sta 663 - Spring 2023

https://peps.python.org/pep-0498/

raw strings
One other special type of string literal you will come across are raw strings
(prefixed with r) - these are like regular strings except that \ is treated as a
literal character rather than an escape character.

print("ab\\cd")1

ab\cd

print("ab\ncd")1

ab
cd

print("ab\tcd")1

ab cd

print(r"ab\\cd")1

ab\\cd

print(r"ab\ncd")1

ab\ncd

print(r"ab\tcd")1

ab\tcd

12Sta 663 - Spring 2023

Special values
By default Python does not support missing values and non-finite floating point
values are available but somewhat awkward to use. There is also a None type
which is similar in spirit and functionality to NULL in R.

1/01

ZeroDivisionError: division by zero

1./01

ZeroDivisionError: float division by zero

float("nan")1

nan

float("-inf")1

-inf

5 > float("inf")1

False

5 > float("-inf")1

True

None1
type(None)2

<class 'NoneType'>

We will not be using these values much currently, but they will be relevant when discussing pandas in a couple of
13Sta 663 - Spring 2023

Sequence types

15Sta 663 - Spring 2023

lists
Python lists are a heterogenous, ordered, mutable containers of objects (they
behave very similarly to lists in R).

[0,1,1,0]1

[0, 1, 1, 0]

[0, True, "abc"]1

[0, True, 'abc']

[0, [1,2], [3,[4]]]1

[0, [1, 2], [3, [4]]]

x = [0,1,1,0]1
type(x)2

<class 'list'>

y = [0, True, "abc"]1
type(y)2

<class 'list'>

More on the underlying data structure and its properties next time
16Sta 663 - Spring 2023

Common operations
x = [0,1,1,0]1

2
2 in x3

False

2 not in x1

True

x + [3,4,5]1

[0, 1, 1, 0, 3, 4, 5]

x * 21

[0, 1, 1, 0, 0, 1, 1, 0]

len(x)1

4

max(x)1

1

x.count(1)1

2

x.count("1")1

0

See and for a more complete listing of functions and methods.here here
17Sta 663 - Spring 2023

https://docs.python.org/3/library/stdtypes.html#common-sequence-operations
https://docs.python.org/3/library/stdtypes.html#mutable-sequence-types

list subsetting
Elements of a list can be accessed using the [] method, element position is
indicated using 0-based indexing, and ranges of values can be specified using
slices (start:stop:step).

x = [1,2,3,4,5,6,7,8,9]1

x[0]1

1

x[3]1

4

x[0:3]1

[1, 2, 3]

x[3:]1

[4, 5, 6, 7, 8, 9]

x[-3:]1

[7, 8, 9]

x[:3]1

[1, 2, 3]

When using a slice the default values are 0:length(x):1
18Sta 663 - Spring 2023

slice w/ step
x = [1,2,3,4,5,6,7,8,9]1

x[0:5:2]1

[1, 3, 5]

x[0:6:3]1

[1, 4]

x[0:len(x):2]1

[1, 3, 5, 7, 9]

x[0::2]1

[1, 3, 5, 7, 9]

x[::2]1

[1, 3, 5, 7, 9]

x[::-1]1

[9, 8, 7, 6, 5, 4, 3, 2, 1]

19Sta 663 - Spring 2023

Exercise 1
Come up with a slice that will subset the following list to obtain the elements
requested:

Select only the odd values in this list

Select every 3rd value starting from the 2nd element.

Select every other value, in reverse order, starting from the 9th element.

Select the 3rd element, the 5th element, and the 10th element

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]1

20Sta 663 - Spring 2023

mutability
Since lists are mutable the stored values can be changed,

x = [1,2,3,4,5]1

x[0] = -11
x2

[-1, 2, 3, 4, 5]

del x[0]1
x2

[2, 3, 4, 5]

x.append(7)1
x2

[2, 3, 4, 5, 7]

x.insert(3, -5)1
x2

[2, 3, 4, -5, 5, 7]

x.pop()1

7

x1

[2, 3, 4, -5, 5]

x.clear()1
x2

[]

21Sta 663 - Spring 2023

lists, assignment, and mutability
When assigning an object a name (x = ...) you do not necessarily end up with
an entirely new object, see the example below where both x and y are names
that are attached to the same underlying object in memory.

x = [0,1,1,0]1
y = x2

3
x.append(2)4

What are the values of x and y now?

x1

[0, 1, 1, 0, 2]

y1

[0, 1, 1, 0, 2]

22Sta 663 - Spring 2023

lists, assignment, and mutability
To avoid this we need to make an explicit copy of the object pointed to by x and
point to it with the name y.

x = [0,1,1,0]1
y = x.copy()2

3
x.append(2)4

What are the values of x and y now?

x1

[0, 1, 1, 0, 2]

y1

[0, 1, 1, 0]

More on .copy() and .deepcopy() methods later on in the course.
23Sta 663 - Spring 2023

Value unpacking
lists (and other sequence types) can be unpacking into multiple variables when
doing assignment,

x, y = [1,2]1
x2

1

y1

2

x, y = [1, [2, 3]]1
x2

1

y1

[2, 3]

x, y = [[0,1], [2, 3]]1
x2

[0, 1]

y1

[2, 3]

(x1,y1), (x2,y2) = [[0,1], [2, 3]]1
x12

0

y11

1

x21

2

y21

3

24Sta 663 - Spring 2023

Extended unpacking
It is also possible to use extended unpacking via the * operator (in Python 3)

x, *y = [1,2,3]1
x2

1

y1

[2, 3]

*x, y = [1,2,3]1
x2

[1, 2]

y1

3

If * is not used here, we get an error:

x, y = [1,2,3]1

ValueError: too many values to unpack (expected 2)

25Sta 663 - Spring 2023

tuples
Python tuples are a heterogenous, ordered, immutable containers of values.

They are nearly identical to lists except that their values cannot be changed -
you will most often encounter them as a tool for packaging multiple objects
when returning from a function.

(1, 2, 3)1

(1, 2, 3)

(1, True, "abc")1

(1, True, 'abc')

(1, (2,3))1

(1, (2, 3))

(1, [2,3])1

(1, [2, 3])

26Sta 663 - Spring 2023

tuples are immutable
x = (1,2,3)1

x[2] = 51

TypeError: 'tuple' object does not support item assignment

del x[2]1

TypeError: 'tuple' object doesn't support item deletion

x.clear()1

AttributeError: 'tuple' object has no attribute 'clear'

27Sta 663 - Spring 2023

Casting sequences
It is possible to cast between sequence types

x = [1,2,3]1
y = (3,2,1)2

tuple(x)1

(1, 2, 3)

list(y)1

[3, 2, 1]

tuple(x) == x1

False

list(tuple(x)) == x1

True

28Sta 663 - Spring 2023

Ranges
These are the last common sequence type and are a bit special - ranges are a
homogenous, ordered, immutable “containers” of integers.

range(10)1

range(0, 10)

range(0,10)1

range(0, 10)

range(0,10,2)1

range(0, 10, 2)

range(10,0,-1)1

range(10, 0, -1)

list(range(10))1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

list(range(0,10))1

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

list(range(0,10,2))1

[0, 2, 4, 6, 8]

list(range(10,0,-1))1

[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

What makes ranges special is that range(1000000) does not store 1 million
integers in memory but rather just three 3 .∗

29Sta 663 - Spring 2023

Strings as sequences
In most of the ways that count we can think about Python strings as being
ordered, immutable, containers of unicode characters and so much of the
functionality we just saw can be applied to them.

x = "abc"1

x[0]1

'a'

x[-1]1

'c'

x[2:]1

'c'

x[::-1]1

'cba'

len(x)1

3

"a" in x1

True

"bc" in x1

True

x[0] + x[2] 1

'ac'

x[2] = "c"1

TypeError: 'str' object does not support item assignment

30Sta 663 - Spring 2023

String Methods
Because string processing is a common and important programming task, the
class implements a number of specific methods for these tasks. Review the
page linked on the previous slide for help.

x = "Hello world! 1234"1

x.find("!")1

11

x.isalnum()1

False

x.isascii()1

True

x.lower()1

'hello world! 1234'

x.swapcase()1

'hELLO WORLD! 1234'

x.title()1

'Hello World! 1234'

x.split(" ")1

['Hello', 'world!', '1234']

"|".join(x.split(" "))1

'Hello|world!|1234'

Find a more complete list of functions here
31Sta 663 - Spring 2023

https://docs.python.org/3/library/stdtypes.html#string-methods

Exercise 2
String processing - take the string given below and apply the necessary
methods to create the target string.

Source:

Target:

"the quick Brown fox Jumped over a Lazy dog"1

"The quick brown fox jumped over a lazy dog."1

Hardcoding w/ magic numbers is perfectly acceptable here.
32Sta 663 - Spring 2023

Set and Mapping types
We will discuss sets (set) and dictionaries (dict) in more detail next week.

Specifically we will discuss the underlying data structure behind these types (as
well as lists and tuples) and when it is most appropriate to use each.

33Sta 663 - Spring 2023

Sta 663 - Spring 2023

